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An approximate approach to the description of the deep penetration of a plastic medium by elongated 

bodies [l] is developed. The results obtained in [2-51 are generalized to another geometry and to a wider 

range of velocities, which is subdivided into intervals. An attempt is made to provide an averaged 

description of the motion in each of the intervals assuming quasistationarity, and the formula for the 

depth of penetration is analysed. Lavrent’yev’s idea on the closeness of the velocity and stress fields 

during the high-velocity motions of bodies in a solid medium and in a liquid, which has been translated 

into the language of asymptotic representations [5], has been further developed in an hypothesis on the 

closeness of the configurations of bodies of minimum resistance in a plastic medium and a liquid subject 

to the condition of the smallness of the ratio of the strength (resistance) force to the hydrodynamic drag 

force. The advantage of tubular bodies compared with solid bodies with respect to mass and depth of 

penetration is indicated. The bounds of the limiting penetration depths are atimated. 

1. AN ABSOLUTELY rigid, elongated and bulky or thin-walled hollow body of revolution (a 
projectile or penetrator) of length L penetrates into a homogeneous, isotropic, viscoelastic half- 
space along a normal to its surface. We will determine the dependence of the depth of 
penetration HO on the initial velocity of the body u,, and the other parameters of the problem. 
The main differences between this investigation and previous theoretical investigations [4,5] are 
the wider range of velocities, including supersonic velocities, and the allowance for the 
separation of the flow of the medium close to the nose part of the body. Moreover, the 
phenomenon of flow separation is made substantial use of when optimizing the penetration 
process with a choice of configuration close to the shape of the body of minimum resistance. 
Since a satisfactory solution of such a complex multiparametric and extremely non-linear 
problem is not possible using either analytic or numerical methods, we have used the well- 
known approach of the summation of asymptotic forms which has been indirectly proved 
theoretically [4,5] and experimentally [3]. 

The medium is characterized by a density p,,, a velocity of propagation of an elastic wave c 
and a von Mises flow limit 2. Young’s modulus E is used for the normalization instead of the 
supposedly more accurate modulus of compression from considerations of the convenience of 
the use of reference material and the estimatory nature of the results obtained. Bearing in mind 
the applications to terradynamics, with regard to the loose soil we will assume that packing 
takes place at a distance from the body and that pO is the density in the packed state. Addition- 
ally, the shape and mass distribution over the length of the penetrator are such that it moves in a 
straight line, is stable, does not rotate, its high mean density p1 %pO and the velocity as well as its 
elongation (1.1) ensure deep penetration (I&S-L). The body itself is assumed to be thin and 
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blunt and, it is assumed, in fact, that the geometry of its surface, beyond a leading part of length 
Z,, is weakly profiled 

R’(x), h’(x) << 1, lo < x < L; h << R. lo <<L (1.1) 

where R and h are the external radius and the thickness of the walls. 
We additionally make the following hypotheses. 
1. The motion of a body in a medium can be considered as a quasisteady process. The 

elongation and relatively high density of the penetrator promote a reduction in the accelerations 
while, in the treatment of the experimental data in [3] the insignificance of the added mass for 
similar configurations was noted. We shall ignore this added mass below. 

2. The initial segment of the entry (the effect of the free surface), as well as other transitional 
processes, are not taken into account. 

3. We shall base our investigation upon the well-known hypothesis of the closeness of the 
velocity and stress fields to the analogous hydrodynamic fields. 

It has been shown in [4, 51 that this closeness is asymptotic, and corrections, due to the 
strength, to the integral characteristics of the steady-state flow around blunt and sharpened 
smooth bodies by an elastoplastic fluid (transonic and subsonic, respectively) have been 
calculated. Moreover, the drag forces are described to a first approximation by a formula of the 
type of the Poncelet formula [2], the coefficients in which are non-trivially related to the 
constitutive parameters of the medium and the shape of the body. Starting from an asymptotic 
approach, it is natural to put forward the hypothesis that the configuration of the body of 
minimum drag in a solid medium will be close (in an asymptotic sense) to the profile of the 
same body in a liquid. It is well known from hydrodynamics that a body which is inserted into 
an expanding cavern behind a disc minimizes the drag [6]. A number of experiments indicate 
the closeness of the laws of expansion of caverns in liquids and in a solid (see [7], for example). 
The strength naturally reduces the rate of expansion of a cavern and, furthermore, forms 
a stagnation zone ahead of the blunt leading part of the penetrator which becomes thinner as 
the velocity increases. It is therefore necessary to correct the contour by passing from 
hydrodynamics to terradynamics with the aim of minimizing the drag and, first of all, account 
must be taken of the narrower cavern behind the body in a solid medium compared with a 
liquid. 

Thus, we assume that the body has an optimal profile in the sense that separation of the flow 
of the medium from the surface of the body occurs in a section x = X. (R = R., h = h.) over a 
significant section of the trajectory of the body at values of the dimensionless velocity (the Mach 
number) M. c M < MO, M= v/c, where v is the free flow velocity and M. is the critical 
(reference) value of the Mach number at which a change in the conditions occurs. It is assumed 
that the flow does not come into contact with the surface over the length X. c x c L when 
M > M.. When M c M,, the penetrator moves under conditions of total contact. We emphasize 
that the aim of this paper is to describe the integral characteristics of bodies of mini- 
mum resistance in a terrestrial medium while pointing out certain general principles of the 
construction of optimal configurations. It is necessary to carry out the search for the actual 
profile, which depends on many factors, on the basis of a text experiment and a corrective 
calculation. 

4. In the case of a tube, we adopt the hypothesis of an isolated element in the form of a narrow 
meridional strip, cut out of the tube, the length of the arc of which a is such that h+aeR. In 
other words, we implement the a priori assumption of the closeness (in the asymptotic sense of 
(1.1)) of the stress and velocity fields around the walls of the tube to the analogous fields during 
the flow around a planar body with a profile identical to that of the meridional section of the 
tube. The effect of the differences in these fields, which arise when the flow separates into 
external and internal flows, on the integral force characteristics is neglected. 

It follows from experiments with solid axially symmetric bodies (R G R,,) that the external 
boundary of a target of radius R+ (restrained or open) has practically no effect if R+ > 5%. On 



Cavitating penetration of a plastic medium by bodies of minimum resistance 1069 

extrapolating this rough estimate to the case of the tube (ideally, by putting the effective 
boundary at R+ = XR,J, we obtain that, when h s h, c 0.14, the shapes of the caverns will only 
be slightly different on the outside and the inside. We emphasize that, in a solid, low porosity 
medium as well as a liquid, the cavern is formed by shearing actions. For instance, a fluid 
particle in the form of a cube on the axis ahead of the body around which the flow occurs 
assumes some peculiar shape after a certain time interval: its median line only approaches to the 
stagnation point, and points belonging to the upper and lower faces, by moving along the stream 
lines, bend around the figure and appear further downstream. The deformations around the 
axis are singular. 

Optimization of a contour means that the body nose is rounded off so as to ensure, firstly, the 
maximum expansion of the free surfaces beyond the points of the flow separation, in the space 
between which an isolated element is inscribed in an optimal manner and, simultaneously, the 
minimum values of the hydrodynamic drag C(M) (the minimum of the norm of the functions 
C(M) in a certain class of functions in a mathematical sense). A compromise between these two 
opposing requirements is achieved, as it is in the case of rod-like configurations, depending on 
the actual case and possibilities available to the investigator. Here, it is obligatory to minimize 
the transverse forces and moments which arise without fail due to the asymmetry of the flow 
with respect to the median surface of the tube. 

5. The law of constant plastic friction on the wetted surfaces of a projectile has traditionally 
been adopted in the treatment of experimental data [3, 71 and in theoretical papers [4, 51. 
Generalizing this law, we introduce an effective mean (with respect to the space and time 
coordinate) frictional stress 2, < 1, as in the case when a thin viscous boundary layer is formed. 

2. Starting out from these assumptions, we represent the resistance force acting on the body as 
viewed from the medium in the form of a sum of terms. One of these is the hydrodynamic drag. 
The others determine the dependence on the strength of the medium [l-4] 

F=~Cpov2s+Bs+zos,; s=&, 2xR,h, (2.1) 

where s and s, are the current values of the midsection of the wetted part of the body and the 
area of the projections of the wetted surface on the direction of the motion and B is a constant. 
Formula (2.1) has been confirmed in theoretical and experimental investigations [3-51. No scale 
effect was observed in the case of clayey and sandy soils when u,, - (lo-103) m/s. It is therefore 
assumed that the medium obeys the constitutive relationships of the von Mises model of 
elastoplasticity. The quasistatic resistance is then proportional to the constant yield stress [3-51 
B= bz. 

The right-hand side of (2.1) can be considered as the superposition of two asymptotic forms 
when u,, + 00 (the strength forces are negligibly small) and when V, + 0 (quasistatics). The 
strength forces disappear on passing to the limit of a liquid (7 + 0). When M,, = V, /c c 0.5, the 
compressibility of the medium can be neglected and the quantity C may be assumed to be 
independent of the velocity. At transonic velocities, this dependence is already significant. Here, 
it is not fixed but the limits of the change in C are known: 0 c C c 2. 

The subsequent simplifications are associated with the replacement of the functions C(M), 
s(M), s,(M), - . . by their mean values in the intervals M > 1 and A4. c M c 1, assuming that the 
variations in these quantities within the supersonic and hydrodynamic (subsonic) ranges of 
motion are small. Then, the integral of the ordinary differential equation for the motion of the 
body F = mH”(t) (t is the time and M is the mass) with the initial conditions H(0) =0, 
H’(0) = U, is taken in a finite form and the dependence of the finite depth of penetration on the 
velocity of entry reduces to the formula 
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=~l+p%n1+4 - (M,>l), H=Gz (M,<Mo<l) c, l+n, 

lf=+l+A&) (MO <M,) 

&. =pAiln 1+ A& 
Ci 

+Plnjl+n.zC,) 
l+AM; C, G 

M,=l, M2=A4,, kS=l, n,=A& (2.2) 

b,=b+&, &z 
SiZ E 

(c)=ci7 (k)=h* (&)=liv (S*)=S&, (To)=29 (Mi_1 CM<M;) 

A, = & /hi, m = 2~~&-,h&, Sr = 2x44 (tube) 

ki=S/Si, m=Slplr Si=rtR*(li) (rod) 

where R,,, &, 1, S= I& are the maximum radius, thickness of the tube, reduced length and 
midsection. In the derivation, use has been made of hypotheses l-5 and the expressions 
mentioned above for the mass of the body m in terms of its density p,. In order to estimate the 
quantity M,, the number n, is introduced. This number is equal to the ratio of the hydro- 
dynamic drag to the corresponding strength forces at the arbitrary instant when the hydro- 
dynamic regime changes to a state of flow without separation (n. - 10). Formula (2.2) obviously 
remains valid when the interval (0, M,) is divided up into an arbitrary number of segments. For 
a fiied mass and entry velocity, p, ki, C and y remain variable parameters. The asymptotic 
forms 

H-p, ki for ki, p+” (2.3) 

which are indicative of the nature of the dependence on the basic parameters, follow 
immediately from (2.2). 

The optimal sets of Ci are not strongly deformed and may point to another system of basic 
dimensionless quantities 

p, ki, “0; no = PoUi /(2qr) (MO > 1) 

where n, is the ratio of the initial hydrodynamic drag to the strength resistance of the medium. 
In carrying calculations using formula (2.2), we select the values k, = k, = k and p from the 

following physical considerations. The density of typical soils varies over a small range 
(p,, = (1.5-3) x lo3 kg/m’). Tungsten alloys (high dynamic strength, melting points, density and 
heat resistance) are the most suitable materials for the manufacture of penetrators which enter 
deeply into a terrestrial medium. Hence, p=7.5 can be taken when estimates are being made. 
No investigations whatsoever of the caverns at supersonic velocities (a liquid or solid medium) 
are known apart from a few experiments in sandy and clayey media (in the latter, the profiles of 
the residual caverns were photographed), where no special changes in cavern formation were 
noted on passing through the velocity of sound (private communication of Yu. K. Bivin). We 
shall therefore direct ourselves to well-known experiments and the results of calculations of 
stationary caverns in an incompressible fluid [8]. 

It is known that unsteady caverns (when braking occurs) are wider than steady ones. The 
same can also be said about caverns in a porous liquid. The compressibility, the initial stresses 
and strength introduce their own corrections and the problem of the calculation of caverns is 
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therefore not simple at all. It is, however, clear that, if the parameter n,, is sufficiently large, the 
laws governing the development of a cavern in a solid and in a liquid will be similar. Next, as the 
velocity decreases and strength forces play a greater role, the cavern in a solid medium will 
narrow down. In an incompressible liquid with a cavitation number equal to zero, the cavern 
expands to infinity and, theoretically, the parameter k may be as large as desired. 

For the calculation let us take an elongation L/2& = 5 (it will be around eight with respect to 
the mean diameter of the penetrator considered below). Then, in the case of a body which is 
inserted into a cavern behind a disc in a fluid, R,, lR. = 8 [8]. For rough estimates of the depths 
of penetration into a solid medium we reduce this ratio by a factor of (R,, /R, = 4). The choice of 
this number is not completely arbitrary. The experiments noted above indirectly point to a value 
close to this. Moreover, the solution of a model problem on an expanding and moving cylinder 
in a densifying plastic medium [9] when matched with the asymptotic forms of the development 
of a cavern close to the edge of a disc, as in a liquid [8], does, in fact, yield such a lower estimate 
for the radius of the cavern (n,%-1). Then, k = 16. Let us now turn our attention to the fact that 
k = 1 for a cylinder which moves along its own axis and this value is a minimum since S 2 s. 

We will introduce the concept of an equivalent cylinder, the density (mass), reduced length 
and midsection of which are the same as those for the penetrator with a curvilinear generatrix. A 
physical meaning of the ratio of the resistive force acting on the cylinder which is equivalent to a 
penetrator with a disc-like nose shape to the resistive force acting on this penetrator under 
cavitating flow conditions when the body is inserted into a cavern without touching its domes 
can be assigned to the parameter k. It can be seen from the estimates that the magnitude of k 
may be quite large. This, and also the high value of the relative density p, according to the 
asymptotic form (2.3) result from a substantial increase in the depth of penetration (a decrease 
in the drag) compared with the analogous characteristics for bodies of “non-optimal shape”. 
We shall subsequently refer to the parameter k as the optimality number of the shape of a body. 

Planar caverns, however odd this is, differ only slightly according to the figure, from axially 
symmetric caverns [8, lo]. Correspondingly, for a tube, we take k = 5 for the reason that the 
flow remote from the site of separation expands approximately as in the case of a rod (in spite 
of the significantly greater elongation of the linear element) as a consequence of its stabilization 
at a certain distance from the separation point on account of the effect of the strength of the 
medium. The treatment of experiments on the penetration of cones with half aperture angles of 
15”-90” into plasticine (the engineering model of a clayey medium) at velocities of l-400 m/s 
(2 = 2’) showed that the magnitude of B f s,z/s is close to a constant 5 x 10” Pa at a value of 
z = 2.2 x 10’ Pa and that both of these quantities depend only slightly on the angle of the cone 
over a wide range of velocities [3,7]. It follows from this that 4 3 = 22. We will use this value at 
the higher values of the velocities since, at high velocities (it4 > M,), on account of the flow 
separation, the replacement of z” by z is not significant and, under quasistatic conditions, 2 = 2,. 
Additionally, this estimate agrees with the theoretical result [5]. In the case of clays, sands and 
rocks, the magnitude of 6, with certain exceptions, oscillates from 10e3 to 5 x 10T3. 

The results of calculations using formulae (2.2) with the choice of the approximate mean 
values of the coefficients C, = 1.2, C, = 0.8 and C, = 0.5 (taking account of the tendency for 
these to increase as the Mach number increases) are shown in Fig. 1 (by the dashed lines for 
n. = 5 and the solid lines for n. = 7.5) for 6 = lo-’ (curves l), 6 = 2.5~10~~ (curves 2) and 
6 = 5 x 10e3 (curves 3). Segments with small depths of penetration (MO c M,), where the majority 
of the experiments were carried out, and zones of rapid and then logarithmic growth of the 
depth with Mach number can be picked out in the graphs. The initial segments of slow growth, 
where the functions H(M,) are approximated by a linear dependence, correspond to quasistatic 
conditions. When the relative strength 6 increases or there is a reduction in the coefficient C, 
(Fig. 2), they expand appreciably. The maximum depth H. which is attained under quasistatic 
conditions is invariant with respect to the characteristics of the medium r and E and is equal to 
SJ 25 in the case of the parameters which were adopted (the solid lines in Fig. 1). The relative 
strength has an effect in a logarithmic manner. The main part of the graph H = H(M,) is 
displaced by = K x50 units downwards or upwards when 6 is decreased or increased by a 
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factor of K. An increase in the parameter n, by a factor of one and a half led to a parallel 
transposition of the H > H. domain of the graphs downwards by = 50 units. From physical 
considerations, a value n, = 7.5 is more realistic (confirmation can be obtained during the 
treatment of the corresponding experiments). The results of varying the parameters Ci when 
n, = 7.5 and 6 = 2.5 ~10~~ are shown in Fig. 2: when there is a uniform reduction in all of the 
previous values (curve 2) by two (curve 1) and they are increased by a factor of one and a half 
(curve 3). It is possible to pick out domains when there is a small variation of the function 
H(M,,) close to the point M, = 0 where the hydrodynamic drag is not significant and, what is 
interesting, in the zone 1.2 <M, < 1.7. This is associated with the variation in the parameter M. 
when the coefficient C is changed and, correspondingly, with the prolongation of the quasistatic 
regime of the motion towards greater values of MO when C is decreased. Here, the curves 
intersect at the points M,, = 1; 1.3. If only the coefficient C, is increased the curves coincide with 
curve 2 in the interval O<M,, cl and, when 44, > 1, they lie between curves 2 and 3 
(1.2 G C, c 1.8) or slightly below curve 3 (1.8 c C, 6 2). 

A knowledge of the relations C = C(M) and the parameters of the problem in actual cases 
permits a more accurate prognosis of the result. The analysis carried out enables one to 
conclude that, when the shape and the material of the penetrator are optimized, relative depths 
H = 120 at M, =l and depths H = 250 at M, = 2 are actually attainable in soils of medium 
relative strength. The variation 10e3 c 6 c 5 x 10e3 leads to the following scatter in the values 
25 c H(M, = 1) c 250 and 160 c H(M,, = 2) c 390. 

3. With the indicated values of the numbers k and p, 6, MO =const, the dimensionless depths of 
penetration of a tube will be approximately one-third of the depth of penetration of a rod. A more exact 
relationship is given by formula (2.4) where the depth increment H* is subtracted in the quasistatic regime 
since, in the case of a tube, this may be neglected 

&=%&U-a), a=HtlH, (Hh =15-25) (2.4) 

On account of the estimate (2.4), the results (Figs 1 and 2) are carried over to cases of the penetration of 
bodies of tubular shape. On the other hand, if one takes the ratio of the absolute depths, takes account of 
the approximate equality of the logarithmic terms and puts kl = h, Cl = C, in formula (2.2), then one 

obtains 

HT mT 
-z;K- 

H, m,“= 
kT R,, lb 

-- 

k, 2(l+a) 

For the same masses and radii of a tube and a rod HT 1 H, = K and, even for relatively thick walled tubes 

R,,/h, = 1.5, the gain in depth will be approximately double. Conversely, for the same depths of 
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penetration, the ratio of the masses is equal to m, / m, = K. 

As an illustration, let us take a two-metre tube made of tungsten alloys (m= 60 kg, h, =5 mm, 

& = 5 cm). The relative depths of penetration of such a tube as a function of the strength of the soil and the 

initial velocity of entry are estimated by the quantities 

zxlO_’ Pa 10 30 100 500 

VJ, km/s 0.5 1 1.5 1 1.5 2 2 3 2 3 

H 22 72 102 32 61 83 38 68 0 10 

and the maximum and normal stress, force and overload according to formula (2.1) are 

Q, = 10gu~ Pa, F, = 1.6 x105v~H, F, lmg = 26Oui 

(u, is in km/s). The estimates were constructed under the assumption that HSR T < 10 corresponds to 

loose soils, moist clays and loams, z c 30 to sands, sandy loams, dry clays and loams, frozen soils and ice, 
2 < 100 to weathered sandstones, limestones, tuffs, . . . , and z c 500 to rock salts, schists, tough limestones, 
sandstones, tuft%, . . . . It is more correct to assume that, in formulae (2.1) and (2.2), ‘t is a parameter of the 
process rather than of the medium on account of its inconstancy as a parameter of the medium and in view 
of the lack of a satisfactory description of the behaviour of a terrestrial medium over a wide range of 
loading rates and magnitudes of the deformations. 

In the model which has been adopted, no account is taken of the dependence of the parameters on depth. 

Apart from heterogeneity, the geostatic stress-strain state has an effect which is sometimes extremely 
complex and not always with the compressive stresses in the horizontal plane. At the same time, the latter 

appreciably increases the drag on account of the strengthening of rocks [ll]. Moreover, it follows from the 

experiments in [3,7] that the dynamic strength z exceeds the static strength by a factor of two to three in the 

case of clayey media. Obviously, the same coefficient should be taken into account in the case of highly 

broken down rocks and rocks which are not saturated with water. The coefficient will be smaller: l-l.5 

times in the case of water-saturated or strong rocks with a small number of defects. The prehistory, rate of 
loading and temperature turn out to have a considerable effect on the position of the yield surface. One of 
the components of the normal stresses is close to zero around an elongated penetrator. This is explained by 
the small strengthening of the medium during flow around a rigid body compared with experiments on 
multilateral compression. On the other hand, the phenomenon of the weakening of the medium in the 

pressure wave (for example, the thinning of soils and the breakdown of the structure when there is 
porosity) leads to a pronounced fall off in the magnitudes of r and 6, and this means, to a substantial 
displacement of the graphs of the function H(M,) upwards. The hydrodynamic regime encompasses a 

wide range of velocities and the penetrator will preferentially move with minimum drag. 
As a rule, the known natural experiments were carried out with penetrators of ogival shape. For 

instance, a projectile with a mass of 145 kg, a diameter of 0.152 m length.of the equivalent cylinder (made of 

a tungsten alloy) 1= 0.42 m travelling at an initial velocity of 706 m/s buried itself 76 m deep in the bottom 
of a dried-up lake. Consequently, the relative depth H = 160. Let us convert the depth to another mass, 
velocity and shape. Then, a projectile with a mass which is q times greater (S = const) penetrates into the 
same medium (with respect to its averaged characteristics) approximately q times deeper. A twofold 
increase in the velocity and refinement of the shape of the projectile, judging from the plots in Fig. 1, 
additionally approximately double the depth. This means that a projectile with a weight of about a ton with 
a velocity U, = 1.4 km/s travels a distance of about 2200 m in the above-mentioned medium. There is no 
doubt that inhomogeneity, initial stresses, and strength significantly reduce this value, but even then, it 
remains impressive. Experiments [13] have shown that such projectiles withstand the impact throughout a 
medium of sandstone type without fracture at velocities of 2.1 km/s, and even have reserves. 

The formation of expanding caverns behind the body follows from the theory of flow around thin bodies 

by an elastic medium [14]. Cavitation traces, that is, channels with a cross-section S, >S have been 

observed a posteriori over the whole range of velocities investigated (up to MO - 1) with a significant 
increase in the mean cross-section of the channel as the level of the velocity increases and not only in moist 
clays [7] (Fig. 3) but also in sandstones, dry clays, frozen soils and in ice (private communication from 
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Yu. K. Bivin, who carried out these experiments). Naturally, channels do not remain in sands. However, 
simple technical solutions to the strengthening of the walls of the cavern during the motion of the 
penetrator are possible. The development of “terradynamic” technologies associated with deep penetration 

and the formation of a stable channel, that is, boreholes then becomes extremely promising. American 
investigators [15] have listed several of them. 

4. Thus, on the basis of a number of physical hypotheses which can be theoretically 

substantiated and experimentally verified, formulae have been proposed for the integral 
characteristics of the penetration of rigid, elongated, blunt bodies into a plastic medium. The 

key idea, Lavrent’yev’s hypothesis concerning the negligible smallness of solid effects in high 
velocity processes, is reflected in the description of the “zeroth approximation” to the shape of 
the body with minimum resistance. We emphasize that, generally speaking, the shape of the 
“optimal penetrator” is not needle-shaped as can be seen at first glance: the elongation of a 
conventional sewing needle is < 50 while it is about ten in the case of the body described in 
Section 2. The results can serve as a basis when estimating the effectiveness of the penetration 
process and in choosing the optimal regime of the motion and configuration. The launching of 
massive penetrators using modern methods of acceleration can be carried out with different 
applied and scientific-investigative aims [15] right down to the study of the physicochemical 
properties of geological sections on other planets. 

The estimates confirm intuitive reasoning concerning the energetically more favourable 
launching of hollow bodies compared with solid bodies. We would, however, emphasize the 
following fact. The optimality numbers k of the planar and axially symmetric contours are, 
respectively, proportional to the first power and the square of the ratio of the linear dimensions 
of the midsection of the body at the site of flow separation and, since the expansion of the 
caverns is almost identical in this and other cases, these numbers are substantially different. 
This means that the optimal planar body penetrates into the medium to a far smaller depth than 
an axisymmetric body of the same characteristic dimensions and density. Attempts at the 
optimization of planar bodies are therefore much less successful than attempts to optimize 
bodies of revolution and the calculated motion of a tube, in the approximation of a planar 
element when compared with the case of a rod, yields a more modest gain than would be 
expected. The conclusion to be drawn from this that spatial elongated forms, which can be 
subdivided into systems of planar elements and bodies of revolution will be less effective than 
axisymmetric contours. Another conclusion, concerning the advantage of spatial (star-shaped) 
forms of small elongation, was drawn, starting out from the asymptotic form of the solution as 
M + 00 in gas dynamics [16] and in a liquid [17]. Wave resistance then plays a significant role. 

We emphasize that the treatment presented above refers to the case when M - 1. In a liquid, 
when M - 1, minimum resistance is obtained in the case of “stars” (and not in the case of the 
equivalent cones) only for sufficiently fine lobes with large angles at the vertex [17]. In a solid 
medium, friction introduces its own corrections. Moreover, elongated bodies possess a large 
inertia compared with short bodies and this means that spatial configurations are not promising 
for attaining maximum depths in a solid medium. The inhomogeneity of the stress state around 
the penetrator becomes an important factor under quasistatic conditions and the predominance 
of strength forces as well as in estimating the effectiveness of the breakdown of the obstruction 
(perforation). Spatial (polyhedral, polyclinic) forms, as has been repeatedly noted, possess the 
better potential possibilities in this sense and it is quite likely that the optimum lies somewhere 
between these configurations. 
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